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Neuromorphic Computing
Sector Overview: ICM HPQC Fund

At the ICM HPQC Fund we seek out early-stage 
investments in technologies that can radically improve the 
way compute can be generated and delivered.

Beyond High Performance Classical Data Centres, AI, 
LLMs, Nvidia, and even quantum computing is an area 
that we are increasingly interested in – remember the 
HPQC Fund loves breakthrough technologies but only 
invests when those technologies are ready to scale 
commercially. We may be close to that tipping point with 
Neuromorphic Computing.

Written by the Chair of our Technical Advisory Board, Dr 
Bill Jeffrey, the following paper provides an introduction for 
our clients, an overview of the sector, and a framework for 
our ongoing communication on this topic with you.  

Dr William “Bill” Jeffrey has worked with emerging 
technologies for 30+ years, driving the development 
of groundbreaking products and bringing innovations 
from the lab to the marketplace, including as Director 
of NIST and as CEO of HRL and SRI International. 
Bill is a director of unlisted and listed technology 
companies internationally.
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Introduction
When it comes to autonomous operations and reasoning, the human brain is unsurpassed by even 
the most advanced AI algorithm. Despite computing speeds being much slower than silicon processors 
and containing a vastly smaller portion of human-generated data, the human brain can adapt quickly 
to radically different environments and create new mental models when confronted by a unique set 
of inputs.

With only 20W of power, a volume of less than 1300cm3, and a mass of ~1.4 kg, the human brain stands 
as existence of proof that an architecture unlike GPUs/TPUs can achieve complex reasoning in near real 
time with limited infrastructure. Given the efficiency of the brain, researchers and companies are 
developing hardware that tries to mimic the physical processes within the brain, hoping to achieve 
human-like intelligence. These approaches are broadly referred to as “neuromorphic computing” and this 
is still an emerging field.

For the most part, neuromorphic computing architectures replicate how we believe brain cells 
are interconnected and interact, but rather than using biological cells, they are built primarily with 
semiconductors. These simulated brains compute in a fundamentally different way than classical 
computers (referred to as von Neumann machines) and offer advantages in applications that require 
reasoning, adaptability, low power, and learning. Some of the major attributes of the brain are shown 
in Figure 12 (top) and the analogous neuromorphic instantiation (bottom). Many of these attributes are 

Neuromorphic Computing

1	 See for example: https://en.wikipedia.org/wiki/Brain_size 
2	 Kudithipudi, D., Schuman, C., Vineyard, C.M. et al., 2025, Neuromorphic Computing at Scale, Nature, 637, 801.

Figure 1: Top Level mapping from brains (top) to neuromorphic systems (bottom).

	 Biomimicry is the conscious 
emulation of life’s genius.

– Janine Benyus

“ ”
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responsible for the high efficiency of the brain, form the rationale for why neuromorphic computing is 
being pursued, and will be discussed in more detail below.

There are, however, impediments to adoption including the lack of standards, limited tools and 
experience with programming, and an immature manufacturing ecosystem. These impediments will 
also be discussed below. This paper will first describe how the human brain processes data, followed by 
neuromorphic architectures, and then delve into applications. 

How do Human Neurons Communicate and 
Store Data?

The fundamental building block of the human brain is a neuron (also referred to as a nerve cell – see 
Figure 23). The neuron is electrochemically connected to other neurons via dendrites (think of them 
as small chemical pipes). The dendrites are branch-like extensions of a neuron that receive signals 
(neurotransmitters). The signals are aggregated in a neuron, and if strong enough, an electrical signal 
(called an action potential or spike) is generated and transmitted along an axon (analogous to a wire). 
At the end of each axon are multiple axon terminators, which convert the electrical signal back into a 
chemical signal which are received by the dendrites of neighboring neurons over a small gap (referred to 
as a synapse). A group of neurons working together to create a signal is called a neural circuit. Note that if 
the aggregated signal in the neuron is below the action potential (or spike), then no signal is transmitted. 

Neuromorphic Computing / Introduction (Continued) 

Figure 2: Depiction of the communication of human neurons via synapses.

2	 Source: https://scienceexchange.caltech.edu/topics/neuroscience/neurons.
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The human brain contains about 100 billion 
neurons (1011) with over 100 trillion connections 
(1014 synapses), implying each neuron is connected 
to about 1,000 other neurons, creating a very 
complex network.
Memory is not stored within a neuron. Instead, memories are stored through changes in the synaptic 
connection between neurons. These connections can be either strengthened or weakened, allowing the 
brain to encode, store, and retrieve information. Given that an individual neuron is connected to ~1000 
other neurons (via synaptic connections), a memory will be broadly distributed over many neurons – 
which are sharing multiple other memories. This distributed architecture provides for robustness against 
the inevitable damage or death of individual neurons. 

Although memories are not stored in a specific neuron, the brain does compartmentalise sensory 
inputs and their processing into different regions of the brain4. For example, the occipital lobe processes 
visual data, the temporal lobe processes smell, taste, and sound, and the frontal lobe controls thinking, 
planning, organising, problem-solving, short-term memory, and movement. The ability of the brain to 
segregate brain regions by input stimulus is not yet captured in neuromorphic processors, and may be a 
fundamental gap in the hardware emulations discussed below.

Sleep appears to play a vital role in memory formation by allowing the brain to replay and stabilise 
memories. To retrieve a memory, the brain reactivates the neural pathways associated with that memory. 
Memory retrieval can be imperfect, leading to incomplete or inaccurate memories.

The strengthening and weakening of synaptic connections are fundamental properties of the brain 
and are referred to as “plasticity” (needed for learning). When neurons repeatedly communicate with 
each other, the connections between them strengthen, making it easier for them to communicate 
in the future. Conversely, if neurons rarely communicate, their connections weaken and may 
disappear altogether.

Major attributes of the human brain that are important for neuromorphic 
processors:
• A highly interconnected network of neurons

• Communication between neurons only occurs when a threshold event occurs (spike)

• Physical interconnect (synapse) between neurons will either strengthen or weaken depending upon
the neuron activity (plasticity) – this is the basis of learning

• Memory is not stored in a single neuron but through a distributed network of connections
(synapses)

Neuromorphic Computing / Introduction (Continued) 

4	 See for example: https://qbi.uq.edu.au/memory/where-are-memories-stored
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What is a Neuromorphic Computer?

A neuromorphic computer relies on artificial neurons and 
synapses to perform computations, directly mirroring the 
brain’s fundamental building blocks. 
The comparison is imprecise since, at the most basic level, a brain is an electrochemical device, 
whereas a neuromorphic system relies on semiconductor physics. In addition, the brain is still not well 
understood, so a neuromorphic system is likely to represent an incomplete (or wrong) model for how the 
brain processes data. 

There are no standards defining how to architect a neuromorphic processor, given the low technical and 
product maturity of the field. The lack of standard architecture slows progress and market adoption since 
each instantiation involves unique components and operations. Some developers are representing the 
features of a neuromorphic system in digital logic, others in mixed-signal (analog and digital) logic, or 
optical components. Cortical Labs (an Australian startup) is creating a hybrid bio-semiconductor system 
using actual human neurons embedded on a CMOS chip (see Figure 3). The neurons are alive and can 
create and modify their synaptic connections with neighboring neurons based upon the underlying 
electrical signals. To date, they have taught the neuromorphic processor to play the game of Pong5. 
But this is not an easily scalable system. Nor do the neurons currently live long enough to make this a 
commercially useful product. It is, however, an interesting research tool.

Neuromorphic Computing / Introduction (Continued) 

5	 https://corticallabs.com/

Figure 3: Cortical labs hybrid human neuron – CMOS chip.
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Neuromorphic Computing / Introduction (Continued) 

6	 Schuman, C., Kulkarni, S., Parsa, M. et al. 2022, Opportunities for Neuromorphic Computing Algorithms and Applications, Nature Computational 
Science, 2, 10.

7	 https://en.wikipedia.org/wiki/Von_Neumann_architecture

Figure 4: Contrasting a conventional computing architecture (left, referred to as a von Neumann 
architecture) versus a neuromorphic architecture (right).

Despite the lack of standard architecture, there exist common attributes across neuromorphic 
processors, as shown in Figure 46. For example, all neuromorphic systems (for the sake of this paper) will 
possess these characteristics. 

These attributes are contrasted with a von Neumann 
architecture7 (standard computer on the left in Figure 4) 
and form the basis of when a neuromorphic processor 
becomes the best choice for a specific application.
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Advantages of a Neuromorphic 
Computer

Neuromorphic processors offer the following 
operational advantages over von Neumann 
architectures (i.e., classical computing architectures):
• Low power – At the core of a neuromorphic processor is the neuron, which communicates only

when the inputs reach a threshold and “spikes”. For many operations, at any moment in time, most
neurons are idle. Calculations are therefore asynchronous (“event driven”) rather than synchronous,
being controlled by a central clock. This consumes very little power (orders of magnitude less
than conventional computing) and aligns neuromorphic processors well to address wearable or
embeddable, edge, and mobile device applications (e.g., implants, robotics, IOT, drones, autos).

• Plasticity – Neuromorphic systems can dynamically adapt and learn from their environment, improving
performance over time without explicit reprogramming. This is particularly valuable for unpredictable
real-world scenarios, including smart homes/cities, security systems, and autonomous vehicles.

• Massively parallel processing – Neuromorphic systems utilise many simple processing elements
(“neurons”) operating in parallel, enabling efficient processing of complex tasks simultaneously.

• Low latency – Time-critical applications (e.g., autonomous driving) require very low latency, implying
local processing (i.e., not utilising the cloud) and not becoming network congested or hitting I/O
bandwidth constraints.

• Avoiding the “memory wall” – A traditional computer has memory and processing physically
separate. This is fundamental to the von Neumann architecture. This architectural decision creates
two bottlenecks: 1) The instructions need to be “fetched” from memory before being executed
sequentially; and 2) The data is often stored externally and needs to be sent to the processor utilising
finite bandwidth links. The memory wall is particularly acute for data-heavy applications such as AI
learning and inference. Neuromorphic processors have the data either stored in the synaptic links
utilising things like memristors, or use small amounts of on-chip local memory (“in-memory compute”),
eliminating the need for external memory.

• Robustness – The distributed nature of neuromorphic architectures can lead to higher fault tolerance,
as the system can continue to function even if some elements fail. Assuming high connectivity and a
system that mimics “plasticity”, then new synaptic connections will form to replace dead neurons or
broken connections. Robustness is highly desirable for life-critical applications like medical implants.
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Potential Applications

The above advantages of neuromorphic computing 
are particularly relevant in near-real-time applications 
that require low power and adaptability, including:

• Autonomous Systems: Autonomous vehicles, drones, and robots require rapid decision-making
based on sensor inputs (e.g., camera, lidar, radar). Neuromorphic processors can analyse the
environment in real-time, improving navigation, obstacle avoidance, and overall safety.

• Smart Cameras: Neuromorphic cameras can perform real-time image processing for surveillance,
traffic management, and crowd monitoring, with lower power consumption and extended
operational lifespan.

• Wearable Devices: Real-time heart arrhythmia detection, continuous health monitoring, and
personalised health tracking can be integrated into the device, providing alerts and eliminating
reliance on cloud processing, which is crucial for privacy.

• Industrial IoT: Factory sensors powered by neuromorphic chips can analyse vibration or acoustic
patterns and other data to detect subtle changes indicative of machine failure. This on-device
processing allows for fault detection with significantly lower power consumption, optimising
maintenance schedules and reducing downtime.

• Smart Homes: Neuromorphic chips can enable adaptive climate control systems that learn user
habits and preferences without cloud communication while enhancing privacy protection.

• Cybersecurity: Neuromorphic systems can detect subtle anomalies in network patterns or user
behaviour that might indicate a cyberattack or breach. Their low latency allows for rapid threat
detection.

• Fraud Detection: By recognising unusual patterns in transaction data, neuromorphic systems can
provide efficient and accurate fraud detection in financial applications.

• Speech and Image Recognition: Neuromorphic systems may provide energy-efficient, real-time,
on-device speech and image processing, particularly in low signal-to-noise environments.

• Adaptive Prosthetics: By analysing muscle or neural signals, neuromorphic systems may enable
more intuitive control of prosthetic limbs that can learn and adjust to a user’s movement patterns
over time.

• AI Pre- or Post-Processor: A more speculative application is to create a hybrid neuromorphic –
AI system. The concept uses a neuromorphic system to efficiently pre-process AI training data to
significantly reduce its size (by orders of magnitude) and allow for a less expensive AI data center.
Alternatively, it may be possible to leverage the adaptability of neuromorphic systems to perform
reasoning used in inference models to rapidly adapt and (perhaps) approach intelligence mimicry.
These are speculative since such a hybrid system has yet to demonstrate “neuromorphic
advantage” (although IBM and SpiNNcloud systems are working towards inference demonstrations –
see the discussion below).
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Development of Neuromorphic 
Processors

Figure 58 shows the rapid 
progress made in increasing 
the number of “neurons” in 
neuromorphic processors. 
Compare this chart with 
Figure 69 which depicts the 
number of neurons in biological 
organisms (with the largest 
number of neurons being in 
African elephants – sorry homo 
sapiens). With the state-of-
the-art system being around 
1 billion neurons, we are 
now approximately matching 
the number of neurons in 
a parakeet. 

Although progress in creating 
more neurons is impressive, 
this is only part of the 
requirements (a necessary 
but not sufficient condition). 
Connectivity is still much less 
than in a biological brain. 
Emulating the brain’s synaptic 
connectivity density requires 
a complex 3-D semiconductor 
fabrication capability that is 
beyond the state-of-the-art. 
Given the important role that 
synaptic connectivity plays 
in learning and memory, 
it is likely that the human 
level of cognition will not be 
reproducible in the near or 
even moderate term (i.e., likely 
decades away).

Figure 5: Exponential increase in the number of neurons being 
simulated in neuromorphic processors.

Figure 6: Typical number of neurons in animals.

8	 Kudithipudi, D., Schuman, C., Vineyard, C.M. et al., 2025, Neuromorphic Computing at Scale, Nature, 637, 801.
9	 https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
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Neuromorphic Computing / Development of Neuromorphic Processors 
(Continued) 

Despite the technical challenges in scaling to human-
level intelligence, there is optimism around near-term 
applications in robotics, autonomous vehicles, and edge 
computing (e.g., for IOT). 
The potential utility of small-scale neuromorphic systems (as well as the frothy AI market in general) is 
driving investment capital into neuromorphic startups. Crunchbase lists more than 25 neuromorphic 
startups, with 12 based in the United States, 8 in China, and the rest spread between Europe 
and Australia10. 

The following table provides a short description of some neuromorphic startups showing a range of 
hardware for vision, navigation, and edge AI, as well as specialised software that emulates a brain.

Company Founded Product Headquarters

Opteran 2020 S/W mimics insect intelligence for autonomous navigation 
at the edge

United Kingdom

SpiNNcloud Systems 2020 Hybrid AI / neuromorphic system. SpiNNaker2 chip 
(released in 2021) has 152,000 neurons and 152M 
synapses using 2-5 W. Designed for brain research, 
robotics, and large-scale hybrid AI models.

Germany

Liquid AI 2023 Small language models for edge applications using neural 
networks

USA (spinout of MIT)

BrainChip 2004 Neuromorphic processor (Spiking Neural Net for Edge AI). 
The Akida (released in 2022) is a digital chip (~30 mW) for 
edge AI.

USA (founded in France)

Prophesee 2014 Neuromorphic vision-based sensor France

SynSense 2017 Neuromorphic processor (vision and sensor fusion). The 
Speck (released in 2022) is a digital chip with an analog 
visual sensor. Contains 328,000 neurons and runs at ~5 
mW. Aimed at computer vision applications.

China (founded in 
Switzerland)

Innatera 2018 Analog-mixed signal neuromorphic processor (Spiking 
Neural Net) for wearables and IOT. The Pulsar (released 
2025) uses < 1mW.

Netherlands

SpiNNcloud Systems is a startup that builds on the Spiking Neural Network Architecture (SpiNNaker) 
design that came out of the European Union Human Brain Project and managed by the University of 
Manchester in the UK. At the University of Manchester, they built one of the world’s largest neuromorphic 
systems11 by combining more than one million neuromorphic processors (see Figure 7). SpiNNcloud 
has taken this development a step further by creating a hybrid GPU-neuromorphic system with up to 
5 million neuromorphic processors that leverage the strengths of both a von Neumann architecture and 
the energy efficiency of a spiking neural network to create a highly energy-efficient AI inference engine 
(claimed to be 78x greater energy efficiency than GPUs). Whereas the hybrid architecture is novel, it is 
unclear if the marketplace will accept the added complexity for the energy savings.

10	 StartUs Insights (https://www.startus-insights.com/innovators-guide/neuromorphic-computing-companies/) lists 119 Neuromorphic Computing 
Startups from around the world.

11	 https://www.eenewseurope.com/en/spinnaker-neuromorphic-supercomputer-reaches-one-million-cores-2/
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Neuromorphic Computing / Development of Neuromorphic Processors 
(Continued) 

Intel and IBM have also been exploring 
neuromorphic processors for decades.
Intel12 developed the Loihi 2 processor, which is a spiking neural net chip available for research. The chip 
consists of 1 million neurons and up to 120 million synapses with a total power of ~1W. The neurons are 
digital (programmable digital signal processors) but communicate via asynchronous spike messages. 
Intel combined 1152 Loihi 2 processors into their full-stack Hala Point neuromorphic computer. Hala 
Point boasts 1.15 billion neurons with 128 billion synapses and uses only 2600 watts. 

12	 https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
13	 https://lava-nc.org/

Figure 7: Size of the SpiNNaker 1 million core machine. Not quite the size of a parakeet.

The system can be programmed using Lava13, a 
neuromorphic programming language that Intel initially 
developed and is now available as open source. Intel’s 
desire is for Lava to become the de facto neuromorphic 
programming language regardless of the neuromorphic 
processor used. 
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Neuromorphic Computing / Development of Neuromorphic Processors 
(Continued) 

14 	 https://research.ibm.com/blog/northpole-ibm-ai-chip
15 	 https://open-neuromorphic.org/blog/northpole-ibm-neuromorphic-ai-hardware/
16 	 https://research.ibm.com/blog/northpole-llm-inference-results

Figure 8 IBM NorthPole “inference accelerator” performance compared to NVIDIA GPUs on a 
3-billion parameter LLM.

IBM14 introduced their NorthPole neuromorphic processor in 2023. This chip was optimised to be an 
AI inference machine as opposed to a system that can be generically trained. It mimics some (not all) 
brain functions15 including spiking, massively parallel processing, and on-chip memory. The processing 
precision is only 2, 4, or 8-bit as it tries to replicate low-precision activation signals found within neurons. 
Referring to NorthPole as an AI inference “accelerator chip”, IBM networked 16 NorthPole processors 
together to perform inference on a 3-billion parameter large language model. In comparison with GPUs, 
NorthPole had 46.9x lower latency and 72.7x lower energy consumption. Figure 816 is from IBM and 
shows the data for NorthPole compared to NVIDIA GPUs.

Large neuromorphic systems (e.g., SpiNNcloud or Hala Point) are useful for testing new neuromorphic 
architectures and modeling biological neural systems. However, their size and complexity hide the 
distinct advantages of a neuro-inspired system. It is unclear whether neuromorphic systems can 
compete successfully as an AI training pre-processor or AI inference accelerator against classical 
computing (von Neumann architecture), given the investments in entrenched architecture. This needs to 
be watched since inference, in particular, has become the dominant AI use (and the largest CapEx outlay). 
If the efforts of SpiNNcloud or IBM gain traction, we will want to be fully cognisant of the potential market 
size and speed of adoption. 
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Ecosystem Impediments for the 
Adoption of a Neuromorphic Computer

Despite the advantages of neuromorphic computing, 
particularly for edge AI applications, there is 
currently little market adoption. In addition to the 
technical immaturity of the neuromorphic systems, 
the supporting ecosystem is still forming. 
For example, standards do not exist for interfacing with neuromorphic processors (either with classical 
computing elements or between neuromorphic chips). Software tools and libraries for setting the initial 
synaptic weights are mostly unique to the specific architecture, and open-source development tools like 
Lava have yet to become widely adopted. 

Foundries have yet to put neuromorphic elements into their standard process design kits (PDKs), making 
existing systems no more than “research prototypes” and likely with low yield. Memristors (for example) 
are resistor-like elements that maintain memory of the charge that flowed through them. They are not 
standard computing elements but can mimic the behavior of neurons and synapses, making them 
important elements for some neuromorphic architectures. 

Human capital is sparse with few experts trained in developing algorithms or using neuromorphic 
systems. Although the number of academic research papers is increasing (dare I say “spiking”), the 
commercial expertise is still fairly limited, with only a small cadre of sufficiently trained practitioners. 
As the market use cases become established, the human capital should develop – but it is 
currently lacking.

Similar to AI, neuromorphic systems will produce an output, but without an explanation. Trust in the 
response is lacking an auditable logic trail. This is particularly critical for real-time decisions that may 
create legal liability (e.g., medical embeddable devices or autonomous operation). Understanding the 
decision logic of a neuromorphic processor is still an early-stage research problem, and until trust in the 
system is established, adoption will have significant headwinds.

The impediments listed above are typical for an early technology development. Communities of interest 
will form and address standards and software development tools. If commercial markets are identified, 
then foundries will create PDKs with neuromorphic elements. And where money is to be made, human 
capital will follow. The toughest impediment will likely be explainability, but if AI is a good analog, 
progress will be made and likely will achieve a level of explainability sufficient for many (perhaps not 
all) applications.
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Adoption Timeline

Neuromorphic computing technology is maturing 
rapidly. In just the past 30 years, the number of 
neurons in a neuromorphic system has increased by 
>1,000,000-fold.
Multiple architectures are being assessed, and this field continues to be a growing focus in academia. The 
major impediment to market adoption is not the ecosystem deficiencies discussed above, but the lack of 
a proven “killer application”. 

Assuming neuromorphic systems are successfully productised, two likely scenarios will drive market 
adoption timing:

1. Killer app (assumed in AI data centres) which will create a large initial demand and fast
manufacturing maturation. Inference for image applications (e.g., videos) is a likely candidate to
demonstrate early neuromorphic advantage – although this is yet to be demonstrated. As the
cost and complexity of designing and operating neuromorphic systems fall, they will then be
broadly adopted. If AI data centres drive the demand, it is still likely to be 5+ years to prove out
the investment thesis prior to adoption. A rapid demand increase is then possible in the 5-10
year timeframe. Following the AI data centre adoption, wearables are likely the next adopter due
to the low risk, followed by IOT, robotics, implantable medical devices, and then autonomous
operations.

2. Niche applications leveraging the low power and plasticity in neuromorphic processors are
an alternative adoption timeline. IOT and wearables may be the first adopters if performance
improvement warrants the development cost. Otherwise, military autonomous systems
may drive adoption, creating a sufficiently sized market that lowers the cost for non-military
applications. In this scenario, widespread adoption will likely be more than 10 years away.
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ICM HPQC Fund
The ICMGF VCC – ICM 
HPQC Fund (ICM HPQC) 
invests in the next 
generation of computing including high-
performance computing, quantum technology 
and new data-centre technologies.  ICM HPQC 
is a sub-fund of ICMGF VCC, a Variable Capital 
Company (VCC) managed by ICM Global Funds 
Pte. Ltd (ICM Global Funds).

Capitalising on the ICM Group’s experience 
in novel technologies like AI and quantum 
computing, as well as its long history of 
telecommunications and data centre 
infrastructure investing, ICM HPQC invests in 
companies that bridge the gap between the 
demand for more powerful, energy efficient, 
and secure computing and the ability of existing 
systems to deliver it.

ICM Global Funds
ICM Global Funds 
is a Singapore-
based, licensed fund 
management company dedicated to serving 
accredited and institutional investors, with 
products spanning a diverse range of asset 
classes, including private debt, convertibles, and 
both private and public equity instruments.

ICM Global Funds is a wholly-owned subsidiary 
of ICM Limited (ICM), headquartered in Bermuda. 
Regulated by the Monetary Authority of 
Singapore, ICM Global Funds holds a Capital 
Markets Services license. It primarily manages 
funds through an umbrella Variable Capital 
Company (VCC) structure which offers clients 
flexibility, tax efficiency, and privacy.

About ICM Limited
ICM Limited (ICM) is an entrepreneurial asset management group. Its expertise enables it to offer an 
innovative, insightful approach beyond traditional investment strategies.

ICM's origins date back to 1988, and it has evolved to become a global organisation, combining the 
established values and independence of a family office, the measured critique and high engagement 
of a private equity house, and the patient vision and loyal support of a founding investor. Alongside 
these qualities, it is increasingly recognised for finding right-sized opportunities in specialist sectors 
where it can have a meaningful role as an investor. ICM's sectors of focus include: Digital Assets, 
Financial Services, Global Corporate Bonds, Mobility, Resources, Technology, and Utilities & 
Infrastructure.

Visit its website www.icm.limited

Contact at info@icm.limited
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Disclaimer
The document has been prepared by ICM Global Funds Pte Ltd (“ICMGF”) for information only. This document should not be relied upon as 
financial advice or constitute a recommendation and should not be considered an offer or solicitation to deal in ICM HPQC Fund (Registration 
number T22VC0112B-SF003) (the “Sub-fund”). Accordingly, this document does not constitute or form part of, and should not be construed as, 
an offer, invitation, or inducement to purchase or subscribe for any securities, nor shall it or any part of it form the basis of, or be relied upon 
in connection with, any contract or commitment whatsoever in any jurisdiction. Any discrepancies between this document and the Private 
Placement Memorandum (“PPM”), the terms and conditions outlined in the PPM shall prevail.

The document does not consider the specific investment objective, financial situation, and particular needs of any specific person. You should 
before making any investment decision, consider the merits or suitability of the fund, the relevant sub-fund or its securities described in this 
presentation to your particular situation, which should be independently determined by yourself. Any such determination should involve, 
among other things, an assessment of the legal, tax, accounting, regulatory, financial, credit, and other related aspects of the securities. If you 
have any doubt about the investment, you should consult an authorised person specialised in advising on investments.

This document is confidential and is being distributed to selected recipients only. It may not be reproduced (in whole or in part), distributed, 
or transmitted to any other person without the prior written consent of ICMGF. No representation or warranty, express or implied, is made as 
to, and no reliance should be placed on, the fairness, accuracy, completeness, or correctness of the information, or opinions contained herein. 
Neither ICMGF, nor any of ICMGF’s representatives, including, if relevant, any of ICMGF’s affiliates or its directors, officers, agents, etc., shall 
have any responsibility or liability whatsoever (for negligence or otherwise) for any loss howsoever arising from any use of this document or its 
contents or otherwise arising in connection with this document. Neither ICMGF nor any other person is under an obligation to keep current 
the information contained in this document.

This fund will primarily invest in unlisted early-stage companies, which typically have a higher risk of default and illiquidity than later-stage 
companies and listed equities. Past performance is no guide to future returns. The value of investments and the income from them may go 
down as well as up, and investors may not get back the full amount they originally invested.

This document has not been approved by the Monetary Authority of Singapore. This document is intended for Accredited Investors or 
Institutional Investors only, as defined in the Securities and Futures Act 2001.

ICM HPQC Fund is a registered Sub-fund of the ICMGF VCC (the VCC), a variable capital company incorporated in the Republic of Singapore. 
The assets and liabilities of ICM HPQC Fund are segregated from other Sub-funds of the VCC, in accordance with Section 29 of the VCC Act.




